Category Archives: Theory

three DOF arm manipulator

Lagrange Equation by MATLAB with Examples

Lagrange Equation by MATLAB  with Examples

In this post, I will explain how to derive a dynamic equation with Lagrange Equation by MATLAB  with Examples. As an example, I will derive a dynamic model of a three-DOF arm manipulator (or triple pendulum). Of course you may get a dynamic model for a two-DOF arm manipulator by simply removing several lines. I am attaching demo codes for both two and three DOF arm manipulators.

If you know all theories and necessary skills and if you just want source code, you can just download from here.

<Download>

In the attached file, “Symb_Development_3DOF.m” generates a dynamic model. “main_sim_three_dof_arm.m” runs a simulation. You may get a result like this.

 

1. Example system

Let’s suppose a three DOF arm manipulator shown in the below figure. I am assuming all of masses (M1, M2, M3) exist at the end of links for simplicity. Three actuators exist at each joint, and directly actuate the torques (u1,u2,u3). The manipulator kinematics is governed by three joint angles (q1, q2, q3).

three DOF arm manipulator

three DOF arm manipulator

 

2. Theoretical Background

We will get a dynamic equation of this system by using Lagrangian mechanics. If you do not have a background knowledge of Lagrangian mechanics, please refer here.

The general dynamic equation is obtained by

\frac{d}{dt}\left( \frac{\partial T}{\partial \dot{q}_j}\right ) - \frac{\partial T}{\partial q_j} + \frac{\partial V}{\partial q_j} = P_j

Where, T is the total kinetic energy, V is the total potential energy of the system. where  P_j is the generalized force, t is time, q_j is the generalized coordinates, \dot{q}_j is the generalized velocity. For the example of three-DOF arm manipulator problem, P_j is the torque at the j-th joint,  q_j  is the angle of the j-th joint, \dot{q}_j is the angular velocity of the j-th joint.

3. Using Matlab symbolic toolbox

First, let’s define the symbols.

I am using x to represent q, xd for \dot{q}, xdd for \ddot{q}  L is the length of each link. u is the torque of each joint. g is the gravity constant.

syms M1 M2 M3;
syms x1 x1d x1dd x2 x2d x2dd x3 x3d x3dd;
syms L1 L2 L3;
syms u1 u2 u3;
syms g

Second, find the position and velocities of the point masses.

p1x = L1cos(x1);
p1y = L1
sin(x1);
p2x = p1x+L2cos(x1+x2);
p2y = p1y+L2
sin(x1+x2);
p3x = p2x+L3cos(x1+x2+x3);
p3y = p2y+L3
sin(x1+x2+x3);

v1x = -L1sin(x1)x1d;
v1y = +L1cos(x1)x1d;
v2x = v1x-L2sin(x1+x2)(x1d+x2d);
v2y = v1y+L2cos(x1+x2)(x1d+x2d);
v3x = v2x – L3sin(x1+x2+x3)(x1d+x2d+x3d);
v3y = v2y + L3cos(x1+x2+x3)(x1d+x2d+x3d);

Third, define the kinetic energy, and the potential energy.

KE = 0.5M1( v1x^2 + v1y^2) + 0.5M2( v2x^2 + v2y^2) + 0.5M3( v3x^2 + v3y^2);
KE = simplify(KE);

PE = M1gp1y + M2gp2y + M3gp3y;
PE = simplify(PE);

Fourth, define the generalized forces, here torques.

Px1 = u1;
Px2 = u2;
Px3 = u3;

Fifth,  solve the Lagrangian equation

We have to get the Lagrangian eqn. \frac{d}{dt}\left( \frac{\partial T}{\partial \dot{q}_j}\right ) - \frac{\partial T}{\partial q_j} + \frac{\partial V}{\partial q_j} = P_j

Let’s obtain step by step.

\left( \frac{\partial T}{\partial \dot{q}}\right ) is obtained by 

pKEpx1d = diff(KE,x1d);

To calculate, \frac{d}{dt}\left( \frac{\partial T}{\partial \dot{q}}\right )we need the chain rule,  that is\frac{d}{dt}\left( \frac{\partial T}{\partial \dot{q}_j}\right )= \sum^{3}_i \left\{ \frac{\partial }{\partial {q}_i}\left( \frac{\partial T}{\partial \dot{q}_j}\right )\frac{dq_i}{dt} + \frac{\partial }{\partial \dot{q}_i}\left( \frac{\partial T}{\partial {q}_j}\right )\frac{d \dot{q}_i}{dt} \right\}

ddtpKEpx1d = diff(pKEpx1d,x1)x1d+ …
diff(pKEpx1d,x1d)
x1dd+ …
diff(pKEpx1d,x2)x2d + …
diff(pKEpx1d,x2d)
x2dd + …
diff(pKEpx1d,x3)x3d + …
diff(pKEpx1d,x3d)
x3dd;

\frac{\partial T}{\partial q_j}, \frac{\partial V}{\partial q_j} are easily obtained by 

pKEpx1 = diff(KE,x1);
pPEpx1 = diff(PE,x1);

By summing all equations,

eqx1 = simplify( ddtpKEpx1d – pKEpx1 + pPEpx1 – Px1);

By repeating these procedures, we can get all governing equations.

Sixth, rearrange the equations.

We love more simplified forms like

\frac{d}{dt} \begin{bmatrix} x_1\\ \dot{x}_1\\ x_2\\ \dot{x}_2\\ x_3\\ \dot{x}_3 \end{bmatrix}= f(x_1,\dot{x}_1,x_2,\dot{x}_2,x_3,\dot{x}_3)

For this form, we need to rearrange the equations by

Sol = solve(eqx1,eqx2,eqx3,’x1dd,x2dd,x3dd’);
Sol.x1dd = simplify(Sol.x1dd);
Sol.x2dd = simplify(Sol.x2dd);
Sol.x3dd = simplify(Sol.x3dd);

Seventh, substitute with y1,y2… variables.

Just for easier implementation of symbolic codes, let’s substitute x1, x1d, x2, … with y1,y2….

syms y1 y2 y3 y4 y5 y6
fx1=subs(Sol.x1dd,{x1,x1d,x2,x2d,x3,x3d},{y1,y2,y3,y4,y5,y6})
fx2=subs(Sol.x2dd,{x1,x1d,x2,x2d,x3,x3d},{y1,y2,y3,y4,y5,y6})
fx3=subs(Sol.x3dd,{x1,x1d,x2,x2d,x3,x3d},{y1,y2,y3,y4,y5,y6})

Eighth, this is the result…. as you can see, it is almost impossible to solve by hand

fx1 =

(L2L3M2u1 – L2L3M2u2 + L2L3M3u1 – L2L3M3u2 – L1L3M2u2cos(y3) + L1L3M2u3cos(y3) – L1L3M3u2cos(y3) + L1L3M3u3cos(y3) – L2L3M3u1cos(y5)^2 + L2L3M3u2cos(y5)^2 + L1L2^2L3M2^2y2^2sin(y3) + L1L2^2L3M2^2y4^2sin(y3) – L1L2L3M2^2gcos(y1) + (L1^2L2L3M2^2y2^2sin(2y3))/2 + L1L2M2u3sin(y3)sin(y5) + L1L2M3u3sin(y3)sin(y5) + L1L3M3u2cos(y3)cos(y5)^2 – L1L3M3u3cos(y3)cos(y5)^2 + L1L2^2L3M2M3y2^2sin(y3) + L1L2^2L3M2M3y4^2sin(y3) – L1L2L3M1M2gcos(y1) – L1L2L3M1M3gcos(y1) – L1L2L3M2M3gcos(y1) + 2L1L2^2L3M2^2y2y4sin(y3) + (L1^2L2L3M2M3y2^2sin(2y3))/2 – L1L3M3u2cos(y5)sin(y3)sin(y5) + L1L3M3u3cos(y5)sin(y3)sin(y5) + L1L2L3M2^2gcos(y1)cos(y3)^2 – L1L2L3M2^2gcos(y3)sin(y1)sin(y3) + 2L1L2^2L3M2M3y2y4sin(y3) + L1L2L3M2M3gcos(y1)cos(y3)^2 + L1L2L3M1M3gcos(y1)cos(y5)^2 + L1L2L3^2M2M3y2^2cos(y5)sin(y3) + L1L2L3^2M2M3y4^2cos(y5)sin(y3) + L1L2L3^2M2M3y6^2cos(y5)sin(y3) + 2L1L2L3^2M2M3y2y4cos(y5)sin(y3) + 2L1L2L3^2M2M3y2y6cos(y5)sin(y3) + 2L1L2L3^2M2M3y4y6cos(y5)sin(y3) – L1L2L3M2M3gcos(y3)sin(y1)sin(y3))/(L1^2L2L3(M2^2 – M2^2cos(y3)^2 + M1M2 + M1M3 + M2M3 – M2M3cos(y3)^2 – M1M3*cos(y5)^2))

fx2 =

-(2L1^2L3M1u3 – 2L1^2L3M1u2 – 2L1^2L3M2u2 + 2L2^2L3M2u1 + 2L1^2L3M2u3 – L1^2L3M3u2 – 2L2^2L3M2u2 + L2^2L3M3u1 + L1^2L3M3u3 – L2^2L3M3u2 + L1L2^2M2u3cos(y3 – y5) + L1L2^2M3u3cos(y3 – y5) – L1^2L2M2u3cos(2y3 + y5) – L1^2L2M3u3cos(2y3 + y5) – L2^2L3M3u1cos(2y5) + L2^2L3M3u2cos(2y5) + L1^2L3M3u2cos(2y3 + 2y5) – L1^2L3M3u3cos(2y3 + 2y5) – L1L2^2M2u3cos(y3 + y5) – L1L2^2M3u3cos(y3 + y5) + 2L1^2L2M1u3cos(y5) + L1^2L2M2u3cos(y5) + L1^2L2M3u3cos(y5) + 2L1L2^3L3M2^2y2^2sin(y3) + 2L1^3L2L3M2^2y2^2sin(y3) + 2L1L2^3L3M2^2y4^2sin(y3) – L1L2L3M3u1cos(y3 + 2y5) + 2L1L2L3M3u2cos(y3 + 2y5) – L1L2L3M3u3cos(y3 + 2y5) + L1^2L2L3M2^2gcos(y1 + y3) – L1L2^2L3M2^2gcos(y1) – L1^2L2L3M2^2gcos(y1 – y3) + L1L2^2L3M2^2gcos(y1 + 2y3) + 2L1^2L2^2L3M2^2y2^2sin(2y3) + L1^2L2^2L3M2^2y4^2sin(2y3) + 2L1L2L3M2u1cos(y3) – 4L1L2L3M2u2cos(y3) + L1L2L3M3u1cos(y3) + 2L1L2L3M2u3cos(y3) – 2L1L2L3M3u2cos(y3) + L1L2L3M3u3cos(y3) + 2L1^3L2L3M1M2y2^2sin(y3) + L1^3L2L3M1M3y2^2sin(y3) + 2L1L2^3L3M2M3y2^2sin(y3) + 2L1^3L2L3M2M3y2^2sin(y3) + 2L1L2^3L3M2M3y4^2sin(y3) + 4L1L2^3L3M2^2y2y4sin(y3) – (L1^2L2L3M1M3gcos(y1 + y3 + 2y5))/2 – L1^3L2L3M1M3y2^2sin(y3 + 2y5) + L1L2^2L3^2M2M3y2^2sin(y3 + y5) + L1L2^2L3^2M2M3y4^2sin(y3 + y5) + L1L2^2L3^2M2M3y6^2sin(y3 + y5) + L1^2L2L3M1M2gcos(y1 + y3) + (L1^2L2L3M1M3gcos(y1 + y3))/2 + L1^2L2L3M2M3gcos(y1 + y3) – 2L1^2L2L3^2M1M3y2^2sin(y5) – L1^2L2L3^2M2M3y2^2sin(y5) – 2L1^2L2L3^2M1M3y4^2sin(y5) – L1^2L2L3^2M2M3y4^2sin(y5) – 2L1^2L2L3^2M1M3y6^2sin(y5) – L1^2L2L3^2M2M3y6^2sin(y5) – 2L1L2^2L3M1M2gcos(y1) – L1L2^2L3M1M3gcos(y1) – L1L2^2L3M2M3gcos(y1) + (L1^2L2L3M1M3gcos(y1 – y3 – 2y5))/2 + L1L2^2L3^2M2M3y2^2sin(y3 – y5) + L1^2L2L3^2M2M3y2^2sin(2y3 + y5) + L1L2^2L3^2M2M3y4^2sin(y3 – y5) + L1^2L2L3^2M2M3y4^2sin(2y3 + y5) + L1L2^2L3^2M2M3y6^2sin(y3 – y5) + L1^2L2L3^2M2M3y6^2sin(2y3 + y5) – L1^2L2L3M1M2gcos(y1 – y3) – (L1^2L2L3M1M3gcos(y1 – y3))/2 – L1^2L2L3M2M3gcos(y1 – y3) + L1L2^2L3M2M3gcos(y1 + 2y3) + (L1L2^2L3M1M3gcos(y1 – 2y5))/2 + (L1L2^2L3M1M3gcos(y1 + 2y5))/2 + 2L1^2L2^2L3M2M3y2^2sin(2y3) – L1^2L2^2L3M1M3y2^2sin(2y5) + L1^2L2^2L3M2M3y4^2sin(2y3) – L1^2L2^2L3M1M3y4^2sin(2y5) + 2L1^2L2^2L3M2^2y2y4sin(2y3) + 4L1L2^3L3M2M3y2y4sin(y3) + 2L1L2^2L3^2M2M3y2y4sin(y3 + y5) + 2L1L2^2L3^2M2M3y2y6sin(y3 + y5) + 2L1L2^2L3^2M2M3y4y6sin(y3 + y5) – 4L1^2L2L3^2M1M3y2y4sin(y5) – 2L1^2L2L3^2M2M3y2y4sin(y5) – 4L1^2L2L3^2M1M3y2y6sin(y5) – 2L1^2L2L3^2M2M3y2y6sin(y5) – 4L1^2L2L3^2M1M3y4y6sin(y5) – 2L1^2L2L3^2M2M3y4y6sin(y5) + 2L1L2^2L3^2M2M3y2y4sin(y3 – y5) + 2L1^2L2L3^2M2M3y2y4sin(2y3 + y5) + 2L1L2^2L3^2M2M3y2y6sin(y3 – y5) + 2L1^2L2L3^2M2M3y2y6sin(2y3 + y5) + 2L1L2^2L3^2M2M3y4y6sin(y3 – y5) + 2L1^2L2L3^2M2M3y4y6sin(2y3 + y5) + 2L1^2L2^2L3M2M3y2y4sin(2y3) – 2L1^2L2^2L3M1M3y2y4sin(2y5))/(L1^2L2^2L3(M2^2 – M2^2cos(2y3) + 2M1M2 + M1M3 + M2M3 – M2M3cos(2y3) – M1M3cos(2*y5)))

fx3 =

-(L1L3^2M3^2u2 – L1L2^2M3^2u3 – L1L2^2M2^2u3 – L1L3^2M3^2u3 – L2L3^2M3^2u1cos(y3) + L2L3^2M3^2u2cos(y3) – 2L1L2^2M1M2u3 – 2L1L2^2M1M3u3 + 2L1L3^2M1M3u2 – 2L1L2^2M2M3u3 – 2L1L3^2M1M3u3 + 2L1L3^2M2M3u2 – 2L1L3^2M2M3u3 + L1L2^2M2^2u3cos(2y3) + L1L2^2M3^2u3cos(2y3) + L1L3^2M3^2u2sin(2y3)sin(2y5) – L1L3^2M3^2u3sin(2y3)sin(2y5) + L1L2L3M3^2u2cos(y5) – 2L1L2L3M3^2u3cos(y5) – 2L2L3^2M2M3u1cos(y3) + 2L2L3^2M2M3u2cos(y3) – 2L2^2L3M3^2u1sin(y3)sin(y5) + 2L2^2L3M3^2u2sin(y3)sin(y5) + L2L3^2M3^2u1cos(2y5)cos(y3) – L2L3^2M3^2u2cos(2y5)cos(y3) + 2L1L2^2M2M3u3cos(2y3) – L2L3^2M3^2u1sin(2y5)sin(y3) + L2L3^2M3^2u2sin(2y5)sin(y3) – L1L3^2M3^2u2cos(2y3)cos(2y5) + L1L3^2M3^2u3cos(2y3)cos(2y5) – L1L2^2L3^2M2M3^2y2^2sin(2y3) – L1L2^2L3^2M2^2M3y2^2sin(2y3) + 2L1L2^2L3^2M1M3^2y2^2sin(2y5) – L1L2^2L3^2M2M3^2y4^2sin(2y3) – L1L2^2L3^2M2^2M3y4^2sin(2y3) + 2L1L2^2L3^2M1M3^2y4^2sin(2y5) + L1L2^2L3^2M1M3^2y6^2sin(2y5) + 2L1L2L3M1M3u2cos(y5) – 4L1L2L3M1M3u3cos(y5) + L1L2L3M2M3u2cos(y5) – 2L1L2L3M2M3u3cos(y5) – 2L2^2L3M2M3u1sin(y3)sin(y5) + 2L2^2L3M2M3u2sin(y3)sin(y5) + 2L1L2L3^3M1M3^2y2^2sin(y5) + 2L1L2^3L3M1M3^2y2^2sin(y5) + L1L2L3^3M2M3^2y2^2sin(y5) + 2L1L2L3^3M1M3^2y4^2sin(y5) + 2L1L2^3L3M1M3^2y4^2sin(y5) + L1L2L3^3M2M3^2y4^2sin(y5) + 2L1L2L3^3M1M3^2y6^2sin(y5) + L1L2L3^3M2M3^2y6^2sin(y5) – L1L2L3M3^2u2cos(2y3)cos(y5) + 2L1L2L3M3^2u3cos(2y3)cos(y5) + L1L2L3M3^2u2sin(2y3)sin(y5) – 2L1L2L3M3^2u3sin(2y3)sin(y5) – L1^2L2L3^2M1M3^2y2^2sin(y3) – 2L1^2L2L3^2M2M3^2y2^2sin(y3) – 2L1^2L2L3^2M2^2M3y2^2sin(y3) – 2L1L2^2L3^2M2M3^2y2y4sin(2y3) – 2L1L2^2L3^2M2^2M3y2y4sin(2y3) + 4L1L2^2L3^2M1M3^2y2y4sin(2y5) + 2L1L2^2L3^2M1M3^2y2y6sin(2y5) + 2L1L2^2L3^2M1M3^2y4y6sin(2y5) + 2L1L2^3L3M1M2M3y2^2sin(y5) + 2L1L2^3L3M1M2M3y4^2sin(y5) – L1L2L3M2M3u2cos(2y3)cos(y5) + 2L1L2L3M2M3u3cos(2y3)cos(y5) + 4L1L2L3^3M1M3^2y2y4sin(y5) + 4L1L2^3L3M1M3^2y2y4sin(y5) + 2L1L2L3^3M2M3^2y2y4sin(y5) + 4L1L2L3^3M1M3^2y2y6sin(y5) + 2L1L2L3^3M2M3^2y2y6sin(y5) + 4L1L2L3^3M1M3^2y4y6sin(y5) + 2L1L2L3^3M2M3^2y4y6sin(y5) + L1L2L3M2M3u2sin(2y3)sin(y5) – 2L1L2L3M2M3u3sin(2y3)sin(y5) – L1L2L3^3M2M3^2y2^2cos(2y3)sin(y5) – L1L2L3^3M2M3^2y2^2sin(2y3)cos(y5) – L1L2L3^3M2M3^2y4^2cos(2y3)sin(y5) – L1L2L3^3M2M3^2y4^2sin(2y3)cos(y5) – L1L2L3^3M2M3^2y6^2cos(2y3)sin(y5) – L1L2L3^3M2M3^2y6^2sin(2y3)cos(y5) + 2L1^2L2^2L3M1M3^2y2^2cos(y3)sin(y5) – 2L1^2L2L3^2M1M2M3y2^2sin(y3) + L1L2L3^2M1M3^2gsin(y1)sin(y3) + 2L1L2L3^2M2M3^2gsin(y1)sin(y3) + 2L1L2L3^2M2^2M3gsin(y1)sin(y3) + L1^2L2L3^2M1M3^2y2^2cos(2y5)sin(y3) + L1^2L2L3^2M1M3^2y2^2sin(2y5)cos(y3) – L1L2L3^2M1M3^2gcos(2y5)sin(y1)sin(y3) – L1L2L3^2M1M3^2gsin(2y5)cos(y3)sin(y1) + 4L1L2^3L3M1M2M3y2y4sin(y5) + 2L1^2L2^2L3M1M2M3y2^2cos(y3)sin(y5) – 2L1L2L3^3M2M3^2y2y4cos(2y3)sin(y5) – 2L1L2L3^3M2M3^2y2y4sin(2y3)cos(y5) – 2L1L2L3^3M2M3^2y2y6cos(2y3)sin(y5) – 2L1L2L3^3M2M3^2y2y6sin(2y3)cos(y5) – 2L1L2L3^3M2M3^2y4y6cos(2y3)sin(y5) – 2L1L2L3^3M2M3^2y4y6sin(2y3)cos(y5) – 2L1L2^2L3M1M3^2gcos(y3)sin(y1)sin(y5) + 2L1L2L3^2M1M2M3gsin(y1)sin(y3) – 2L1L2^2L3M1M2M3gcos(y3)sin(y1)sin(y5))/(L1L2^2L3^2M3(M2^2 – M2^2cos(2y3) + 2M1M2 + M1M3 + M2M3 – M2M3cos(2y3) – M1M3cos(2y5)))

4. Now it is ready!!! let’s run a simulation!

copy the result and paste the symbols in a Matlab function. Then, run an ODE with the function.

A sample code is here.

<Download>

In the attached file, “Symb_Development_3DOF.m” generates a dynamic model. “main_sim_three_dof_arm.m” runs a simulation. Then, you can get this result.

 

 

So far, I have explained how to derive a Lagrange Equation by MATLAB  with Examples.  I hope that this post helps your project and save your time. Please leave a message if you have any question.

 

Update on 02/21/2016

I updated some code and posting about typo. “simple” -> “simplify” There is no function “simple” Now all programs are running well.

 

-Mok-

 

Reference

[1] http://en.wikipedia.org/wiki/Lagrangian_mechanics

[2] https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB8QFjAA&url=http%3A%2F%2Fsstl.cee.illinois.edu%2Fapss%2Ffiles%2FLagrange_Reference.doc&ei=iF9SVYT0N8TJtQXCwoDgCQ&usg=AFQjCNEyv1Ut3cGu6ylAjtZyG6ZPCYQkIg&sig2=pJ-84gdkjCqH_AH9pB6tjA&bvm=bv.92885102,d.b2w&cad=rja

[3] http://www.mathworks.com/matlabcentral/fileexchange/23037-lagrange-s-equations

[4] https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0CDIQFjAD&url=http%3A%2F%2Fweb.stanford.edu%2Fclass%2Fme328%2Flectures%2Flecture6-dynamics.pdf&ei=oJ5kVa7CG4GKsQWDloFQ&usg=AFQjCNGWFZZ4uBP_ObHHnirkEzAIc5OONw&sig2=ISnRQj-kBc0y_eoT_0y7Hw&bvm=bv.93990622,d.b2w

MATLAB code for Numerical calculation of Jacobian matrix for a complex number

In this post, I share a MATLAB code for numerical calculation of Jacobian matrix for a complex number.

Download

This code was developed by Sithan Kanna, based on my code. If you are just interested in Jacobian of a real number, please see this post.

http://youngmok.com/numerical-jacobian-matrix-matlab/

I really thank to Sithan Kanna for sharing this nice code. If you have a question on this code please send an email to sithankanna a-t gmail d-o-t com

Download

 

This is a sample result of the code

>> h=@(x)[x(1) ; conj(x(1))]; % nonlinear equation

conjug = 0;
real = 0;
x_test = [0.5*1j];
H = NumJacob(h, x_test, conjug, real)

H =

1.0000
-0.0000

 

Have a nice day, and thank you for visiting my blog.

-Mok-

 

—————————————————————————————————

I am Youngmok Yun, and writing about robotics theories and my research.

My main site is http://youngmok.com, and Korean ver. is  http://yunyoungmok.tistory.com.

—————————————————————————————————

 

Maxon EPOS2 Driver C++ Class using USB-CAN Gateway for Multiple Motor Actuation

I am sharing a C++ Class for multiple Maxon motor actuation by EPOS2 via USB-Can gateway.

The source code is written for two motors, but it is possible to modify easily to actuate multiple motors.

<Download>

If you want to see a simpler version for one motor actuation, see this article. 

I hope this article makes your life easier.

-Mok-

UDP Server C++ Class with a listening thread


DO NOT USE THIS CODE ANY LONGER. TOO MUCH OUTDATED AND BUGGY


I am sharing a code for “UDP Server C++ Class with a listening thread”. In the class “UDPThread”, a thread is running to receive a UDP packet.

<Download>

Just compile a demo program with this command. Then you will understand.

g++ demo_udp_server.cpp UDPThread.cpp -lpthread -o demo_udp_server

This is the result.

Screenshot from 2015-03-04 15:44:40

<Download>

I hope this code helps your project.

-Mok-

Minimal c++ class for Maxon EPOS2

Minimal c++ class for Maxon EPOS2

I am sharing the minimal C++ class for Maxon EPOS2. It includes a basic “initialization”, “Move”, “Read position”, “Close device” functions. The program consists of a class called “cmaxonmotor”.  You can download the class and demo program here

<Download>

You can see a simple demo program here.

#include <stdio.h>
#include <iostream>
#include "cmaxonmotor.h"

using namespace std;

int main(int argc, char *argv[])
{
    CMaxonMotor motor("USB0",1);
    motor.initializeDevice(); // initialize EPOS2

    long TargetPosition = -200000;
    int CurrentPosition = 0;

    motor.Move(TargetPosition); // move to the target position

    cout << "Press <Enter> to stop and quit..." << endl;
    getchar();
    motor.GetCurrentPosition(CurrentPosition); // get the current position
    cout << "Current Position: " << CurrentPosition << endl;

    motor.closeDevice(); // close EPOS2

    return 0;
}

 

You can control one motor just via USB, and also able to control multiple motors via USB-CAN gateway. For this version, see this article.

I hope this helps your project.

 

 

-Mok-

Gaussian Kernel Bandwidth Optimization with Matlab Code

Gaussian Kernel Bandwidth Optimization with Matlab Code

In this article, I write on “Optimization of Gaussian Kernel Bandwidth” with Matlab Code.

First, I will briefly explain a methodology to optimize bandwidth values of Gaussian Kernel for regression problems. In other words, I will explain about “Cross validation Method.”

Then, I will share my Matlab code which optimizes the bandwidths of Gaussian Kernel for Gaussian Kernel Regression. For the theory and source code of the regression, read my previous posts <link for 1D input>, <link for multidimensional input>. This Matlab code can optimize bandwidths for multidimensional inputs. If you know the theory of cross validation, or if you don’t need to know the algorithm of my program, just download the zip file from the below link, then execute demo programs. Probably, you can use the program without big difficulties.

<Download>

1. Bandwidth optimization by a cross validation method

The most common way to optimize a regression parameter is to use a cross validation method. If you want to know about the cross validation deeply, I want to recommend to read this article. Here I will shortly explain about the cross validation method that I am using. This is just a way of cross validation.

1. Randomly sample 75% of the data set, and put into the training data set, and put the remaining part into the test set.

2. Using the training data set, build a regression model. Based on the model, predict the outputs of the test set.

3. Compare between the predicted output, and the actual output. Then, find the best model (best bandwidth) to minimize the gap (e.g, RMSE) between the predicted and actual outputs.

2. Matlab code for the algorithm

You can download all functions and demo programs from the below link.

<Download>

This program is for multidimensional inputs (of course, 1D is also OK). The most important function is Opt_Hyp_Gauss_Ker_Reg( h0,x,y ) and it requires Matlab optimization toolbox. I am attaching two demo programs and their results. I made these demo programs as much as I can. So, I believe that everybody can understand. 

<Demo 1D>

demo_1d

demo_1d_result

<Demo 2D>

demo_2d demo_2d_result

 

I wish this post can save your time and efforts in your work. If you have any question, please leave a reply.

-Mok-

—————————————————————————————————

I am Youngmok Yun, and writing about robotics theories and my research.

My main site is http://youngmok.com, and Korean ver. is  http://yunyoungmok.tistory.com.

—————————————————————————————————

 

 

Gaussian Kernel Regression for Multidimensional Feature with Matlab code

Gaussian Kernel Regression for Multidimensional Feature with Matlab code (Gaussian Kernel or RBF Smoother)

I am sharing a Matlab code for Gaussian Kernel Regression algorithm for multidimensional input (feature).

In the previous post (link), I posted a theory of Gaussian Kernel Regression, and shared a Matlab code for one dimensional input. If you want to know about the theory, read the previous post. In the previous post, many visitors asked me for a multidimensional input version. Finally I made a Gaussian Kernel Regression Program for a general dimensional input

You can download the program from this link.

<Download>

I wrote a demo program to show how to use the code as easy as possible.

The below is the demo program, and a demo result plot. In this demo program, the dimension of input is 2 because of visualization, but it is expendable to an arbitrary dimension.

 

demo_codedemo_result

 

For the optimization of kernel bandwidth, see my other article <Link>.

 

I wish this program can save your time and effort for your work.

If you have any question, please leave a reply.

—————————————————————————————————————————–

I am Youngmok Yun, and writing about robotics theories and my research.

My main site is http://youngmok.com, and Korean ver. is  http://yunyoungmok.tistory.com.

—————————————————————————————————————————–

 

 

 

Monte Carlo Integration with a simple example

In this article, I will explain Monte Carlo Integration.

How can we do the “Integration”?

In many cases, the integration is not easy in an analytical method.

The Monte Carlo Integration method is a numerical integration method.

Let’s think about the below example. MCI1

 

The goal of this integration is to find the area of pink region.

The key idea of the Monte Carlo integration is to find \hat{f}} to represent f. See below.

MCI2Then, How can we find the \hat{f}} ? the Monte Carlo Integration method uses “Expectation method” (Average) See below

MCI3

 

With the random sampling method, we can get the \hat{f} by calculating the mean value.

This is a very useful way especially for the calculation of Bayesian posterior.

 

The below is an example of Monte Carlo Integration.

I will solve this problem  \int^2_{-1}x dx

>> N=10000;
>> 3*sum(rand(N,1)*3-1)/N

ans =

1.5202

Here \hat{f} is < sum(rand(N,1)*3-1)/N > and the range of the integration is 3.

Then, good luck

For more detail, I recommend to read the below article.

http://web.mit.edu/~wingated/www/introductions/mcmc-gibbs-intro.pdf

 

—————————————————————————————————————————–

I am Youngmok Yun, and writing about robotics theories and my research.

My main site is http://youngmok.com, and Korean ver. is  http://yunyoungmok.tistory.com.

—————————————————————————————————————————–

Gaussian kernel regression with Matlab code (Gaussian Kernel or RBF Smoother)

Gaussian kernel regression with Matlab code

In this article, I will explain Gaussian Kernel Regression (or Gaussian Kernel Smoother, or Gaussian Kernel-based linear regression, RBF kernel regression)  algorithm. Plus I will share my Matlab code for this algorithm. 

If you already know the theory. Just download  from here.  <Download>

You can see how to use this function from the below. It is super easy.

main figure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From here, I will explain the theory.

Basically, this algorithm is a kernel based linear smoother algorithm and just the kernel is the Gaussian kernel. With this smoothing method, we can find a nonlinear regression function.

The linear smoother is expressed with the below equation

y^* = \frac{\sum^N_{i=1}K(x^*,x_i)y_i}{\sum^N_{i=1}K(x^*,x_i)}

here x_i is the i_th training data input, y_i is the i_th training data output, K is a kernel function. x^* is a query point, y^* is the predicted output.

In this algorithm, we use the Gaussian Kernel which is expressed with the below equation. Another name of this functions is Radial Basis Function (RBF) because it is not exactly same with the Gaussian function.

K(x^*,x_i)=\exp\left(-\frac{ (x^*-x_i)^2}{2b^2}\right)

With these equation, we can smooth the training data outputs, thus we can find a regression function.

This program <Download> was made for one-dimensional inputs. If you need multi-dimension, please leave a reply, see this article. I recently made a new version for multidimensional input.

For the optimization of kernel bandwidth, see my other article <Link>.

 

Then good luck.

 

-Mok-

—————————————————————————————————————————–

I am Youngmok Yun, and writing about robotics theories and my research.

My main site is http://youngmok.com, and Korean ver. is  http://yunyoungmok.tistory.com.

—————————————————————————————————————————–

Hill Type Muscle Model with Matlab Code

Hill Type Muscle Model with Matlab Code

In this post, I will write on the Hill type muscle model, and then, I will provide a Matlab code made for the model. 

If you have a basic knowledge about the muscle tendon unit, and just want to download the Matlab code, just download from the following links

<Matlab m code> or <Matlab Simulink block>.

If you are familiar with Biomechanics, I think the best source to study a muscle tendon model is Zajac’s paper [4]. 

OK let’s go to the main writing.

Generally, the muscle tendon unit is modeled by the below figure including a CE (controctile component element), PE (parallel elastic element), and SE (series elastic element). This is the Hill type muscle-tendon model. The CE and PE are elements for a muscle, and the SE is for a tendon. Sometimes the SE is ignored in modeling, depending on tendon type, because its stiffness is very high.

hill type muscle model [1], Hill Type Muscle Model with Matlab Code

hill type muscle model [1]

The CE generates a contracting force on tendon, and the size of force is a function of the velocity/length of muscle as shown in the below equations. This is a general model, but sometimes the other model is used, depending on the type of muscle, if you want to know the detail refer [3]. 

Fce, Hill Type Muscle Model with Matlab Code

Force function of CE [2]

The PE element is modeled by the below equation. Again SE can be ignored, thus in my Matlab code, it is ignored.

Force of PE and SE, Hill Type Muscle Model with Matlab Code

Force of PE and SE [5]

Finally, we can make a model based on the above equations. In my code, I made a muscle-tendon model for finger muscles. If you want to model for the other muscle tendon unit, you have to search several parameters for the muscle.

You can download the Matlab code and Simulink code from below link. I made the same function with two different ways for user’s convenience.

<Matlab m code> or <Matlab Simulink block>.

 

[1]
E. M. Arnold, S. R. Ward, R. L. Lieber, and S. L. Delp, “A Model of the Lower Limb for Analysis of Human Movement,” Ann Biomed Eng, vol. 38, no. 2, pp. 269–279, Feb. 2010.
[2]
J. Rosen, M. B. Fuchs, and M. Arcan, “Performances of Hill-Type and Neural Network Muscle Models—Toward a Myosignal-Based Exoskeleton,” Computers and Biomedical Research, vol. 32, no. 5, pp. 415–439, Oct. 1999.
[3]
J. L. Sancho-Bru, A. Pérez-González, M. C. Mora, B. E. León, M. Vergara, J. L. Iserte, P. J. Rodríguez-Cervantes, and A. Morales, “Towards a realistic and self-contained biomechanical model of the hand,” 2011.
[4]
Z. Fe, “Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control.,” Crit Rev Biomed Eng, vol. 17, no. 4, pp. 359–411, Dec. 1988.
[5]
P.-H. Kuo and A. D. Deshpande, “Contribution of passive properties of muscle-tendon units to the metacarpophalangeal joint torque of the index finger,” in Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on, 2010, pp. 288–294.

 

—————————————————————————————————————————–

I am Youngmok Yun, and writing about robotics theories and my research.

My main site is http://youngmok.com, and Korean ver. is  http://yunyoungmok.tistory.com.

—————————————————————————————————————————–