
Statistical method for prediction of gait kinematics
with Gaussian process regression

Youngmok Yun a, Hyun-Chul Kim b, Sung Yul Shin b, Junwon Lee b, Ashish D. Deshpande a,
Changhwan Kim b,n

a Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
b The Center of Bionics, Korea Institute of Science and Technology, Seoul, South Korea

a r t i c l e i n f o

Article history:
Accepted 17 September 2013

Keywords:
Gait pattern
Statistics
Gaussian process regression
Stochastic analysis

a b s t r a c t

We propose a novel methodology for predicting human gait pattern kinematics based on a statistical and
stochastic approach using a method called Gaussian process regression (GPR). We selected 14 body
parameters that significantly affect the gait pattern and 14 joint motions that represent gait kinematics.
The body parameter and gait kinematics data were recorded from 113 subjects by anthropometric
measurements and a motion capture system. We generated a regression model with GPR for gait pattern
prediction and built a stochastic function mapping from body parameters to gait kinematics based on the
database and GPR, and validated the model with a cross validation method. The function can not only
produce trajectories for the joint motions associated with gait kinematics, but can also estimate the
associated uncertainties. Our approach results in a novel, low-cost and subject-specific method for
predicting gait kinematics with only the subject's body parameters as the necessary input, and also
enables a comprehensive understanding of the correlation and uncertainty between body parameters
and gait kinematics.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many recent attempts to understand and predict human gait
pattern utilize model-based optimization techniques. This
approach hypothesizes mathematical models and cost functions
of the moving bodies, and determines the optimized motion of
model. Typical examples of the cost function include total meta-
bolic energy (Anderson and Pandy, 2001) and total muscle effort
(Xiang et al., 2011), and the models range from simple link models
(Srinivasan and Ruina, 2006; Geyer et al., 2005) to elaborate
biomechanical models involving muscles, tendons, varying
moment arms and body segments (Anderson and Pandy, 2001;
Delp et al., 2007).

While the model-based optimization methods have led to
advances in fields such as biomechanics of walking, lower-limb
rehabilitation, and biped machine walking (Neptune et al., 2009;
Zajac et al., 2003; Bessonnet et al., 2004), there are significant
limitations to this approach. The optimization methods need
mechanical and biomechanical models for describing the human
motion. Assumptions and simplifications are inherent, even in the
most advanced models, resulting in limitations of the methods.

The choice of cost function affects the results significantly and it is
a topic of ongoing scientific debate (Todorov, 2004). Although
reasonable choices have been made, it is difficult to capture the
complexities of human walking with one specific cost function.
Most optimization methods output a deterministic pattern. How-
ever, the human movements possess inherent variability and
change with time, gender, age, body features and also the emo-
tional state (Blanc et al., 1999; Kerrigan et al., 1998; Cunningham
et al., 1982; Escalante et al., 2001; Murray et al., 1964; Samson
et al., 2001; Macellari et al., 1999). Moreover, evidence shows that
walking may involve randomness (Hausdorff et al., 1995), which is
impossible to capture with the deterministic optimization meth-
ods, even in a hypothetical case of fully modeled system.

Statistics-based methods provide an alternative approach for
gait pattern prediction because these methods are free of any
predetermined biomechanical models and cost functions, and can
inherently handle the deviations and uncertainty in human walk-
ing. Although statistical methods have been employed to investi-
gate the effects of body parameters on the gait pattern, e.g. gender
(Blanc et al., 1999; Kerrigan et al., 1998) and age (Cunningham
et al., 1982; Escalante et al., 2001), typically, only the effect of a
single factor is analyzed and no functional mapping is developed.
Over the last two decades, the introduction of motion capture
devices in gait pattern research has led to the collection of a large
amount of data (Kadaba et al., 1990; Davis et al., 1991). And the
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recently developed machine learning algorithms such as neural
network (Bishop, 1995), support vector machine (Smola and
Schölkopf, 2004), and Gaussian process regression (Rasmussen,
2006) provide novel and computationally powerful statistical tools
for processing such a large-scale data.

Our goal is to develop a statistical and stochastic approach for
gait kinematics prediction using a large-scale database. We pre-
sent a method that builds a stochastic function mapping whose
input is body parameters and output is the gait pattern kinematics.
The developed function mapping is a numerical model, sometimes
referred to as a black-box model, and it is created through the
Gaussian process regression (GPR) algorithm (Rasmussen, 2006).
By incorporating the variability in the database in the modeling
formulation, GPR can produce a stochastic function whose output
is a probability distribution of the predicted gait kinematics rather
than a strictly deterministic value.

In addition, we provide a Matlab/Octave toolbox, ‘Gait Kine-
matics Prediction Toolbox’ and a database ‘KIST Human Gait
Pattern Data’ for gait kinematics prediction along with a more
detailed description of the presented method, as Supplemental
Material.

2. Methods

2.1. Data collection with human subjects

A total of 113 healthy subjects (50 males and 63 females) participated in the
study. Ethics rules of the Institutional Review Board (IRB) of Korea Institute of
Science and Technology (KIST) were followed during data acquisition (IRB Approval
number: 2012-006). We chose the subjects so as to maintain a uniform distribution
in age between years 20 and 69. For each subject, age and gender were recorded,
and 12 body parameters (Fig. 1) were measured using the method described by
Chandler et al. (1975). Gait kinematic data were acquired with a motion capture
system (Motion Analysis Inc.) with eight cameras, and the Helen Hayes Hospital
marker set (15 markers on the lower-body, Kadaba et al., 1990) was adopted.
Because we were collecting data with a large number of participants, we decided to
attach markers on the subject's clothing rather than on the skin or on a bodysuit.
We fixed a velcro belt tightly on the subject's clothed body and then attached
markers on the velcro belt (Fig. 2(a)). During the experiment, subjects were asked
to walk at a constant speed, 3 km/h, which is a normal walking speed (Ryu et al.,
2006) on a treadmill (Fig. 2(b)). When a stable walking speed was reached, motion
capture data were recorded for 1 min (approximately 40–60 walking cycles).

The 3-D XYZ marker position data were converted into human joint space
(Kadaba et al., 1990). A marker attached on the pelvis was used as a reference
point, and all other relative joint motions were calculated. A total of 14 joint
displacements and rotations were calculated from 3-D position data including:
pelvis X=Y=Z-axis displacement, pelvis rotation, right/left hip adduction/flexion/
rotation, right/left knee flexion, and right/left ankle flexion. These 14 kinematic
measures are the gait pattern outputs and other minor joint rotations (e.g. knee
varus) were not considered in this method.

2.2. Data pre-processing

Raw data from the motion capture device contain 14 joint motions whose time
length is about 60 s, including 40–60 gait cycles (Fig. 3(a)). First, for pelvis XYZ-axes
displacement, the low-frequency offset of the raw data is eliminated by high pass
filtering; because the marker on pelvis is used as a reference point, time-variant
offset exists. Since the filtered pelvis Y -axis displacement data have the most stable
cyclic pattern among all motions (Fig. 3), we used it to determine the cutting points
denoting the start and end of one walking cycle (Fig. 3(a)). Second, all raw data of
joint motions are divided into several one-period fragments based on the cutting
points. This cut in the period was automatically performed by a computer program
in Matlab (Mathworks Inc.). The average period is calculated from those different
periods (Fig. 3(c)). Third, because the truncated one-period joint motion fragments
have varying periods, all one-period joint motions were normalized to have the
same period by a time resampling method. Then one average pattern is obtained
from the normalized patterns (Fig. 3(d)). The averaged and normalized gait pattern,
and averaged period represent one subject's gait pattern. All of the regression
procedures are conducted with these normalized gait patterns and averaged
periods. The final result of regression is also a normalized gait pattern and a
period. Then the normalized gait pattern is stretched back with the predicted
period by time resampling.

2.3. Gaussian process regression algorithm for gait pattern prediction

Gait pattern prediction is regarded as a nonlinear regression task and we
implemented the Gaussian process regression (GPR) algorithm (Rasmussen, 2006)
for generating a functional mapping between the input variables (14 body
parameters) and output gait pattern (14 joint motions for gait kinematics and gait
period). First, we describe the GPR algorithm to predict joint motions from Sections
2.3.1 and 2.3.3, and then explain the algorithm to predict gait period in Section
2.3.4.

2.3.1. Definition of training set
For the prediction of normalized joint motions, the training input vector x, the

training output scalar y, and their sets X and y are defined as follows:
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where b is a vector denoting the subject's body parameter, N is the total number of
subjects, t denotes a time index in the normalized time frame, T is the last index of
the normalized time frame, and y is a gait pattern value (given as a distance or an
angle) corresponding to its x. For example, if a training set is made for ankle flexion
pattern, xði�1Þ�Tþ j includes the body parameter bi of i-th subject and the j-th time
index tj, and corresponding y is ankle flexion angle for the given condition. This
training set is built for all of the 14 joint motions that represent gait kinematics.

2.3.2. Design of Gaussian process model
A Gaussian process is completely defined by its mean function and covariance

function (Rasmussen, 2006), as follows:

f ðxÞ � GPðmðxÞ; kðx; x′ÞÞ ð2Þ
where mean function mðxÞ ¼ E½f ðxÞ�, and covariance function kðx;x′Þ ¼ E½ðf ðxÞ�
mðxÞÞðf ðx′Þ�mðx′ÞÞ�.

In our GP model, the mean function and the covariance function are deter-
mined as follows:

mðxÞ ¼ 0 ð3Þ

kðx; x′Þ ¼ ν0 exp � ðΔbÞ>ΛbðΔbÞþλtΔt2

2

� �
þν1δði; jÞ ð4Þ

whereΔb is defined as b�b′ and Δt is defined as t�t′. δði; jÞ is the Kronecker delta

function. Λb is a diagonal matrix whose elements are λb1…λb14. The hyperpara-
meter set is defined as a set of ν0 ;ν1 ; λb1�14 ;λt , and denoted as Θ. This
hyperparameter set determines the characteristics of GP model.

1. Age
2. Height
3. Mass
4. Gender
5. Thigh length
6. Calf length
7. Bi-trochanteric width
8. Bi-iliac width 
9. ASIS breath
10. Knee diameter
11. Foot length
12. Malleolus height
13. Malleolus width
14. Foot breath
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11. Foot length

12.Malleolus 
height

Fig. 1. A total of 14 body parameters, which are easily measurable and significantly
affect gait pattern, are selected for this study. Age and gender were recorded
through a questionnaire, and other factors were measured by the experimenters
with the method described by Chandler et al. (1975).
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With the above configuration, we can predict a probability distribution of joint
motion yn for a given test set xn including body parameter bn and time tn as
follows:

pðynjxn;X;y;ΘÞ ¼N ðk>
n
K�1y; κ�k>

n
K�1knÞ ð5Þ

where K is a matrix whose elements Kij is a covariance function value of kðxi ; xjÞ.
kn ¼ ½kðxn ;x1Þ…kðxn; xnÞ�T . κ ¼ kðxn; xnÞ.

2.3.3. GP model optimization
The newly devised GP model for gait pattern prediction is defined by the mean

function (3) and the covariance function (4), and their characteristics are adjusted
by the hyperparameter set Θ. By selecting the hyperparameter set, the optimal GP
model which most well represents all of the training set was selected. The
optimization of the hyperparameter set was performed by maximizing the like-
lihood among training dataset, or pðyjX;ΘÞ. Practically, the optimization was
performed by maximizing log-likelihood as shown in (6). In this study, the
optimization was performed by a line search algorithm (Press et al., 2009):

log pðyjX;ΘÞ ¼ � 1
2
y>K�1y� 1

2
log jKj� NT

2
log 2π ð6Þ

2.3.4. Gait period prediction
Compared with the prediction of joint motion, the prediction of the gait period

is relatively simple because its training set does not include time index. For the
prediction of the gait period, the training data and the covariance function are set

as follows:

X¼
x>
1

⋮
x>
N

2
64

3
75¼

b>
1

⋮
b>
N

2
664

3
775; y¼

y1
⋮
yN

2
64

3
75 ð7Þ

kðx; x′Þ ¼ v0 exp � ðΔbÞ>ΛbðΔbÞ
2

� �
þv1δði; jÞ ð8Þ

Here, yi is i-th subject's average period. All the other GPR procedures are performed
in the previously described procedure.

2.4. Validation process

To validate performance of the proposed prediction algorithm, a cross-
validation method (also called the Leave-one-out cross-validation, Kohavi et al.,
1995, or the Jackknife method Miller, 1974) was adopted by regarding one test
subject's gait pattern data as unknown and then using the other subjects' data as
the regression training set for generating a functional mapping. After predicting the
gait pattern for the test subject using his/her body parameters and the developed
functional mapping, the actual and predicted gait patterns are quantitatively
compared. These steps are repeated by considering each subject as a test subject
for validating the proposed methodology.

Fig. 2. Motion capture for gait pattern data acquisition. (a) Markers were attached on each subject's body according to the configuration of Helen Hayes Hospital marker set.
(b) Subjects walked on a treadmill at a constant speed.

Fig. 3. Data pre-processing procedure. This procedure generates a representative gait pattern for each subject, including an average period and a normalized and averaged
gait pattern. (a) Raw joint motion data from the motion capture device were collected for about 60 s. (b) The high-pass filtering step is required only for pelvis XYZ-axes
displacement data. Raw data for pelvis XYZ-axes displacement have time-variant offsets because the marker on the pelvis is a reference point. The low-frequency time-
variant offset was eliminated by high-pass filtering. From the high-frequency signal of pelvis Y-axis displacement data, we obtained cutting points for period cut; it has the
most stable cyclic signal among all joint motions as shown in Fig. 6. (c) All raw data of joints motions are truncated based on the cutting points. Average period is calculated
from those different periods. (d) X-axis of the truncated fragments are normalized to have the same period by a time resampling method. One average pattern is obtained
from the normalized patterns.
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3. Results

The distribution of subjects shows comparable numbers of
males and females, uniform distribution in age from 20-year-old
to 69-year-old, and normal distributions for height and weight
(Fig. 4). Table 1 lists the mean values and standard deviations for
all the body parameters for the subjects (except for gender).

We have built a functional map between body parameters and
gait kinematics with data from 113 subjects and the function
predicts not only the trajectories of an arbitrary person's 14 joint
motions representing gait patterns but also the uncertainty
associated with each of the motions. We illustrate the prediction
methodology with results from two subjects: S1 and S2. S1's body
parameters are close to the average of all the subjects and S2's
body parameters far from the average values (Fig. 5 and Table 1).
Figs. 6 and 7 show the predicted gait motions for the two subjects.

Through the cross-validation method, the mean and standard
deviation of predicted gait patterns for all subjects were calculated.
We present the results for subjects S1 and S2, and also the overall
results (Table 2). The quantitative measures for cross-validation
include the mean error, which indicates the difference between the
actual and the predicted mean values, the average values of predicted
standard deviation, and a term called auto mean error which is the

difference between the actual and the average of the trajectories over
all the subjects. Mathematical definitions are described in Table 2.

4. Discussion

The main contribution of this paper is a novel statistical
methodology for predicting human gait pattern kinematics. A
stochastic functional mapping is created based on a large database
and the GPR algorithm. The presented approach is a low cost
method for predicting gait kinematics because it only needs 14
easily measured body parameters. The output of the function is
not a strict value but a probabilistic distribution providing the
trajectory of gait pattern and its uncertainty. The method enables a
comprehensive understanding of the correlations and associated
uncertainty between body parameters and gait kinematics. Pre-
vious statistical methods thus far have analyzed correlations
between a particular gait feature (e.g. stride length) and body
parameter (e.g. height), but this new approach allows for the
simultaneous analysis of multiple factors. This may lead to better
modeling and analysis of human walking.

One valuable use of the method is the prediction of a normal gait
pattern for a subject with physical or neurological deficiencies (e.g.
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Fig. 4. A total of 113 subjects participated in the experiments. (a) Gender distribution, (b) age distribution, (c) height distribution, and (d) weight distribution.

Table 1
Mean and standard deviation of 113 experiment participants’ body parameters.
The mean and standard variation of gender is not calculated due to its discrete
characteristic.

Body parameters Mean Std.

Age (years) 44.27 14.92
Height (cm) 164.8 8.323
Mass (kg) 65.74 12.48
Thigh length (cm) 35.37 3.151
Calf length (cm) 39.16 3.131
Bi-trochanteric width (cm) 33.29 1.753
Bi-iliac width (cm) 30.71 2.125
ASIS breath (cm) 25.71 2.300
Knee diameter (cm) 10.33 0.898
Foot length (cm) 23.85 1.501
Malleolus height (cm) 6.696 0.802
Malleolus (cm) 6.735 0.563
Foot breath (cm) 9.412 0.724
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-1
0
1
2
3

Age
Height

Mass

Thigh length

Calf length

Bi-trochanteric width
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Std(σ)
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Fig. 5. The distribution of body parameters of a female subject S1 (blue) and a male
subject S2 (red). The green line represents mean value of all subjects’ body
parameters and green dot shows its standard deviation. All distributions are
normalized, thus 0 indicates the mean (μ) and 1 means one standard deviation
(s) value. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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amputation or stroke). In most rehabilitation and prosthetics imple-
mentations, the target gait pattern is an average motion. The
presented method predicts gait pattern specific to a subject which
is more accurate than average of motions from all the subjects
(Table 2). Knowing the subject-specific healthy gait patternwill allow
therapists to better plan and monitor rehabilitation, and allow
designers to customize prostheses. Other potential applications
include the generation of reference trajectories for the control of a
humanoid robot or an animated character in order to generate a
walking pattern that closely resembles a particular subject's gait.

4.1. Mean error and uncertainty of predicted gait pattern

The proposed algorithm provides a method for predicting
probability distributions corresponding to a test subject's joint
motions representing his/her gait pattern (Fig. 6 and Table 2). For
all subjects, mean error (footnote c in Table 2) is smaller than auto

mean error (footnote b in Table 2), which confirms that the
prediction algorithm is effective.

The mean value of the probability distribution is the predicted
joint motion trajectory for the subject, and the standard deviation
of the distribution indicates how precisely we can predict the
trajectory. The accuracy of prediction and the size of standard
deviation for a given subject are affected by two factors: the
uncertainty of training data itself, and the distribution of a test
subject's body parameters compared to the distribution of training
subjects' body parameters in the database. A joint motion with
high repeatability over time and over different subjects in the
database is predicted with small mean error and low standard
deviation, for example pelvis Y displacement for subject S1 (Fig. 6),
while mean errors are larger in the prediction of motion with low
repeatability over subjects, for example pelvis Z displacement for
subject S1 (Fig. 6). Comparison of prediction results obtained for
the subjects S1 and S2 shows the effects of body parameter
distribution on the accuracy of prediction. The values for the body
parameters for the subject S1 are close to the mean values of
database (Fig. 5) so the function predicts subject S1's motion
trajectories with small errors and low standard deviation (Fig. 6
and Table 2); whereas the body parameters for subject S2 are
much larger than the mean values of the database (Fig. 5) and
motion trajectories for this subject are predicted with large errors
and wide standard deviation (Fig. 7 and Table 2).

The predicted uncertainty, or predicted standard deviation, is a
valuable feature for our statistical regression method because it
provides the confidence level of the prediction. From the predicted
standard deviation, we can guess the size of mean error, and
actually the mean error and predicted standard deviation have the
same trend (Table 2). In statistical approaches, prediction error,
which comes from various sources including a sparse database,
measurement error in the data collection, and the effect of
uncounted body parameters, is inevitable. However, if we know
the level of confidence for the prediction, researchers can assign
appropriate actions to the prediction results. Also the confidence

Fig. 6. Gait pattern prediction result using GPR with subject S1's body parameters, which are close to the average values of all subjects as shown in Fig. 5. X-axis indicates
normalized time in all the figures except the top left. The suggested algorithm provides both the mean and the standard deviation of predicted joint motion pattern and gait
period. Gait patterns for all other subjects are drawn with gray lines, and these were used as a training output.

Fig. 7. Predicted joint motion results for S2's left hip extension and left knee
flexion. X-axis indicates normalized time line. S2's body parameters are far from
the average of training set's as shown in Fig. 5, and this results in large uncertainty
of predicted joint motions as shown in the wide width of green lines. For the full
prediction result, refer to the Supplementary Material.(For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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level may aid experimenters in deciding if the collected database
for training is sufficiently rich for their application.

4.2. Body parameters and gait kinematics

A large number of factors influence gait kinematics for a
subject, including age, gender, height, weight, body fat, muscle
strength and even psychological condition. It is prohibitively
difficult and also undesirable to include all the factors in the
modeling, analysis and prediction of gait patterns with a statistical
method. While ignoring key factors may limit the effectiveness of
the prediction methods, including too many factors will lead to
very high dimension of input for the training data leading to
degradation of the performance of the regression algorithm. Thus,
the number and type of input variables should be chosen carefully.
We chose 14 representative human features which significantly
affect the gait kinematics (Vaughan et al., 1992; Murray, 1967;
Hanavan, 1964) and which are easy to measure (Chandler et al.,
1975), thus allowing for data collection with a large number of
subjects. The effects of the other factors are encapsulated by
uncertainties in the stochastic formulation of GPR.

Numerous previous research approaches have investigated the
relationship between the body parameters and gait parameters
(not a trajectory motion) with statistical methods. They analyzed
that the effects of one or two factors at a time and typically simple
(linear) dependency is assumed (Blanc et al., 1999; Kerrigan et al.,
1998; Cunningham et al., 1982; Escalante et al., 2001). However,
the relationships between gait pattern and body parameters are
nonlinear and correlated with one another. For example, female
subjects generally walk with shorter strides than male subjects,
but when the stride length is normalized by height, females shows
a similar or slightly larger stride length (Escalante et al., 2001;
Kerrigan et al., 1998), thus suggesting that simultaneously analyz-
ing effects of multiple human parameters may lead to more
insightful understanding. The proposed method allows, for the
first time, a general mapping function over body parameters and
gait pattern. By controlling the input vector to this function, the
effects of multiple factors can be analyzed simultaneously.

4.3. Regression algorithm

A number of methods exist for nonlinear regression such as least
squares and its variants (Bates and Watts, 2007), neural networks
(Bishop, 1995), and support vector regression (Smola and Schölkopf,
2004). We chose to employ the Gaussian process regression
(Rasmussen, 2006) for the following reasons: First, GPR is a powerful
nonlinear regression algorithm for a database whose input (here,
body parameters) has high dimension and the elements of the input
are highly correlated. The GPR algorithm only counts the Euclidean
distance between body parameter sets in the scaled input space,
ðΔbÞ>ΛbðΔbÞ, as shown in (4). Even though the input vector has
high dimension, if their Euclidean distances are close, its prediction is
reliable. Body parameters are highly correlated, and thus their
distribution is neither even nor sparse in the input space, instead it
is located in a narrow region called the reduced-order manifold or
latent variable space. Therefore, the GPR algorithm can reliably
predict an arbitrary subject's gait kinematics by comparing his/her
body parameters with the training subjects' body parameters lying
on the narrow region. Second, GPR inherently assumes the uncer-
tainty of the training set and produces a stochastic function.
Compared with other deterministic algorithms, GPR is robust to the
errors in training set and we can evaluate its reliability from the
predicted standard deviation value. Third, GPR has a principled way
for the selection of complexity of models. Once the GP is defined
with a mean and a covariance function, the complexity of the model
is determined by the database. This property is an important
advantage of GPR compared with other traditional nonlinear regres-
sion methods, such as least squares methods, neural networks, and
support vector regression.

4.4. Limitations

While this completely statistics-based approach for predict-
ing gait kinematics, with no analytical models, provides broader
freedom for modeling human walking, some advantages gained
from insightful models are missing in the presented approach.
Also, at this point, only the kinematics of gait patterns are

Table 2
The cross validation results for gait pattern prediction.

Predicted feature S1 S2 All subjects

Mean err.a Predicted stdb Mean err.a Predicted std.b Mean err.c Predicted std.d Auto mean err.e

Period (s) 0.055 0.022 0.017 0.033 0.068 0.041 0.137
Pelvis X disp. (mm) 2.300 2.428 6.037 6.857 3.462 3.355 5.045
Pelvis Y disp. (mm) 3.741 1.525 6.264 7.572 3.583 3.934 5.046
Pelvis Z disp. (mm) 6.438 7.334 8.203 8.696 6.651 3.911 9.725
Pelvis rot. (deg) 0.886 1.201 1.369 2.078 1.265 1.513 1.894
R. Hip add. (deg) 0.251 1.355 2.788 1.974 1.492 0.821 2.240
R. Hip ext. (deg) 2.129 1.956 6.141 8.151 3.995 2.427 5.491
R. Hip M. rot. (deg) 1.126 2.620 3.163 3.255 2.026 1.750 2.835
R. Knee flex. (deg) 2.573 4.970 10.170 12.670 7.055 4.232 9.520
R. Ankle P.flex. (deg) 3.462 5.333 5.743 6.094 4.295 2.755 5.567
L. Hip abd. (deg) 0.712 1.726 1.369 1.870 1.512 0.796 2.238
L. Hip ext. (deg) 1.507 4.765 5.209 7.287 3.981 2.346 5.627
L. Hip L. rot. (deg) 1.553 1.832 1.861 2.865 1.735 1.747 2.810
L. Knee flex. (deg) 3.918 4.978 8.402 13.750 6.952 4.238 9.372
L. Ankle P. flex. (deg) 1.759 5.210 4.517 6.444 4.203 2.631 5.570

a The mean error for S1 and S2 is defined as eðs; jÞ ¼ ð1=TÞ∑T
t ¼ 1jynðs; j; tÞ�yðs; j; tÞj.

b The predicted standard deviation is defined as sðs; jÞ ¼ ð1=TÞ∑T
t ¼ 1sðs; j; tÞ. s is the subject index, j is the joint index, t is the time index, T is the max time index. yn is the

predicted mean value, y is the actual value, and s is the predicted standard deviation.
c The mean error for all subjects is defined as eðjÞ ¼ ð1=SÞ∑S

s ¼ 1eðs; jÞ.
d The predicted standard deviation for all subjects is defined by the average value of predicted standard deviations, or sðjÞ ¼ ð1=SÞ∑S

s ¼ 1sðs; jÞ. S is the total number of
subjects.

e The auto mean error is defined by the deviation of training trajectory itself. In other words, it is obtained from the difference between the training trajectories and the
mean of themselves. dðjÞ ¼ ð1=TÞ∑T

t ¼ 1½ð1=SÞ∑S
s ¼ 1jyðs; j; tÞ�yðj; tÞj� where yðj; tÞ ¼ ð1=SÞ∑S

s ¼ 1yðs; j; tÞ.
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analyzed. The limitations can be addressed by harnessing the
power of numerical tools and analytical models. One method is to
implement biomechanical models as kinematic and dynamic
constraints into the GPR algorithm (Wang et al., 2006). Another
approach would be to develop analytical models and then use GPR
to modify these models. In this study we only chose input
parameters representing kinematics of gait. To incorporate gait
biomechanics and dynamics, we will choose biomechanical and
kinetic parameters such as link inertias and joint stiffness. In this
paper, we have only analyzed walking at one speed on leveled
ground. Analysis of effect of walking speed on gait kinematics is
part of our ongoing work. The accuracy and reliability of the
presented method depends on the size of database, which is true
for all statistical methods.
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